2.2 生物處理技術
2.2.1 厭氧消化
餐廚垃圾的厭氧消化是指利用兼性厭氧微生物的代謝作用在無氧條件下將復雜的有機物分解為簡單或小分子有機物及無機物,在這過程中實現對餐廚垃圾的減容減量處理以及資源化利用的方法。厭氧消化技術可以根據需要通過控制消化條件和消化程度來產生多種產物,但目前的研究主要集中在甲烷和氫氣等能源物質的生產。氫氣是一種非常理想的載能載體,具有很高的能量密度,熱轉化效率高,清潔無污染的特點,被認為是最有可能成為化石燃料的替代能源;甲烷也是一種理想的優質燃料,可以作為汽車燃料,也可用來供熱和發電,有較高的經濟利用價值,而且通過厭氧消化產生具有利用價值的氫氣和甲烷,耗能低,對環境無污染或污染較小,因而越來越受到人們的重視。
厭氧消化技術通過微生物降解來實現餐廚垃圾的減容減量和回收利用,其自動化程度較高,所需要人力較少,容易控制惡臭氣味的散發,且產品具有多樣化、經濟價值較高等優點。但是微生物對酸堿度要求高,處理技術也很復雜,反應器內生物啟動時間長;同時餐廚垃圾中的鹽分和油脂含量過高會導致過度堿化,使消化過程pH偏高,抑制菌體生長,不利于持續并穩定地降解餐廚垃圾;與此同時厭氧發酵產生的沼渣,需要進一步處理,通常需干化處理后填埋,或重新堆肥后制成有機肥。
2.2.2 好氧堆肥
好氧堆肥是指利用好氧微生物在有氧條件下對堆積于地面或者專門發酵裝置中的有機物進行生物降解,最終形成穩定的高肥力腐殖質,其實質就是一個有機質穩定化的過程。好氧堆肥雖然操作技術簡單,便于推廣,但是需要較大面積的處理場地,堆肥過程會產生難聞氣味,經濟效益不高。此外,需要注意的是由于餐廚垃圾中含有大量鹽分,長期使用餐廚垃圾堆肥品可能會加劇土壤的鹽堿化。
另外,餐廚垃圾的高油脂和高鹽分會抑制微生物生長,延長處理周期和降低堆肥產品的品質,如任連海分析了餐廚垃圾含油量對堆體溫度、pH值、含水率、可溶性碳氮比等好氧過程參數的影響規律,結果表明含油量較高時好氧堆肥反應速率較慢,反應體系所達最高溫隨含油量的增高而下降,當含油量達到8%時,堆料最高溫度始終達不到55℃不利于滅菌。同時,油脂會在堆料表面形成一層膜,導致堆料出現厭氧現象,不利于堆肥微生物的生長。
2.2.3 蚯蚓堆肥
蚯蚓堆肥法是指在好氧堆肥的基礎上投入蚯蚓,利用蚯蚓自身豐富的酶系統,將餐廚垃圾的有機物質轉化為自身或其他生物易于利用的營養物質,加速堆肥化的穩定過程 ,又稱蚯蚓生物穩定化技術。蚯蚓消化道分泌的淀粉酶、蛋白酶、脂肪分解酶、纖維素酶、幾丁質酶及腸道內微生物群落可以加速分解基質纖維素及蛋白質成分,能有效地分解餐廚垃圾,同時還能降低甚至抑制堆肥過程中臭味的產生。此外,蚯蚓代謝活動還可以產生大量的活性物質,有利于作物生長和品質改善;蚯蚓堆肥不僅可以降低碳氮比和重金屬含量,提高堆肥肥效,而且蚯蚓糞便也是髙肥效生物肥。因此蚯蚓堆肥技術具有較高的生態效益和經濟效益,利用蚯蚓處理餐廚垃圾,不僅工藝簡單,不需要特殊設備,還可以促進垃圾資源化利用和良性循環,實現可持續發展。
但是蚯蚓對其生長環境要求很高,需要有適合的溫度、濕度、氧氣濃度、pH等,而餐廚垃圾的高水分、高鹽含量等特性均不利于該項技術的進行,且堆肥過程中產生的甲烷和其他臭氣也不利于蚯蚓的生存。此外,蚯蚓是一種低等動物,它在處理垃圾過程中容易逐步退化,且餐廚垃圾中油脂和鹽含量高的特性也會影響蚯蚓的生長。
2.3 其他處理技術
除以上處理技術外,還有部分學者研究各種微生物技術如制生物柴油、提取生物可降解塑料等,甚至有的學者還研究餐廚廢棄物的產電技術和生產生物農藥。但是這些處理技術技術含量要求較高,經濟投入較大,難以推廣,甚至有些還只處于初步的實驗室研究階段。但是在經濟全球化、社會資源大消耗乃至出現資源短缺的社會背景下,這些技術的開發應用具有廣闊的前景,同時也符合我國循環經濟發展的要求和可持續發展戰略。
3 展 望
餐廚垃圾處理技術的多樣化,說明了餐廚垃圾的合理及時處理在城市垃圾處理中的重要性,特別是近年餐廚垃圾資源化技術大量研究,也說明將餐廚垃圾變廢為寶具有廣闊的發展前景。但是本文前面所介紹的幾種技術都必須把餐廚垃圾集中收集運輸到一個固定場所,然后才進一步處理使之資源化。這樣不僅增加了餐廚垃圾的收集難度,運輸成本高,也難免會在運輸過程中出現泄露現象而污染環境,且占用大量面積土地。所以有學者提出餐廚垃圾原位減量技術,該技術的核心部分就是微生物菌種的選育和設備參數的優化以及菌種的控制,其對人體和社會的安全性不容忽視。因此,這將是今后餐廚垃圾處理技術的研究熱點之一。